Extracellular Vesicles as Mediators of Cancer Disease and as Nanosystems in Theranostic Applications.

Cancers (Basel)

Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.

Published: July 2021

Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their "traits" to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as "cell competition". This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer" defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268753PMC
http://dx.doi.org/10.3390/cancers13133324DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
cancer
9
cells
9
extracellular vesicles
8
specific traits
8
evs play
8
aggressive cancer
8
tumor cells
8
evs
6
vesicles mediators
4

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!