Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study assessed the intervention of foliar application of silver nanoparticles (AgNPs) on heavy metal toxicity and phytoremediation status of planted in gold-mined soil. The green synthesized AgNPs absorbed maximally at 425 nm, had an average particle size of 55 ± 2.3 nm and peaks at 3,443 and 1,636 cm. seeds were grown in gold-mined soil and its seedlings were wetted with water and different concentrations of AgNPs (0.75, 0.50 and 0.25 mg/mL). Foliar applications of AgNPs significantly improved percentage heavy metal remediation and reduced contamination intensity by 60% and 44%, respectively in . Heavy metals induced oxidative stress in wetted with water which manifested in the reduction of growth performance and photosynthetic pigments by 43% and 15% in that order. Significant overexpression of superoxide dismutase activity and malondialdehyde by 70% and 86%, respectively together with a significant reduction in carotenoid contents and antioxidant activity by 92% and 15%, respectively were obtained for in control. The intervention of foliar application considerably protected with improved physiology, enzymic and non-enzymic antioxidant activities. These results conclude that foliar application AgNPs beneficially mediated toxicities of heavy metals in plants. Gold mining is an economic venture but contamination of ecological matrixes by heavy metals usually accompanies it. Farming on either an active or abandoned gold site can predispose residents to the toxicity of heavy metals. Therefore, remediation before or during cultivation is key to ensuring safety. Silver nanoparticles have proved effective in remediating heavy metals and improving biochemical activities in plants due to their intrinsic properties and adsorptive potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2021.1949578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!