A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. | LitMetric

A double-stranded spiroborate helicate bearing a bisporphyrin unit in the middle forms an inclusion complex with electron-deficient aromatic guests that are sandwiched between the porphyrins. In the present study, we systematically investigated the effects of size, electron density, and substituents of a series of aromatic guests on inclusion complex formations within the bisporphyrin. The thermodynamic and kinetic behaviors during the guest-encapsulation process were also investigated in detail. The guest-encapsulation abilities in the helicate increased with the increasing core sizes of the electron-deficient aromatic guests and decreased with the increasing bulkiness and number of substituents of the guests. Among the naphthalenediimide derivatives, those with bulky -substituents at both ends hardly formed an inclusion complex. Instead, they formed a [2]rotaxane-like inclusion complex through the water-mediated dynamic B-O bond cleavage/reformation of the spiroborate groups of the helicate, which enhanced the conformational flexibility of the helicate to enlarge the bisporphyrin cavity and form an inclusion complex. Based on the X-ray crystal structure of a unique pacman-like 1:1 inclusion complex between the helicate and an ammonium cation as well as the molecular dynamics simulation results, a plausible mechanism for the inclusion of a planar aromatic guest within the helicate is also proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c01155DOI Listing

Publication Analysis

Top Keywords

inclusion complex
24
aromatic guests
16
bisporphyrin cavity
8
double-stranded spiroborate
8
spiroborate helicate
8
thermodynamic kinetic
8
electron-deficient aromatic
8
helicate
7
inclusion
7
complex
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!