Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A double-stranded spiroborate helicate bearing a bisporphyrin unit in the middle forms an inclusion complex with electron-deficient aromatic guests that are sandwiched between the porphyrins. In the present study, we systematically investigated the effects of size, electron density, and substituents of a series of aromatic guests on inclusion complex formations within the bisporphyrin. The thermodynamic and kinetic behaviors during the guest-encapsulation process were also investigated in detail. The guest-encapsulation abilities in the helicate increased with the increasing core sizes of the electron-deficient aromatic guests and decreased with the increasing bulkiness and number of substituents of the guests. Among the naphthalenediimide derivatives, those with bulky -substituents at both ends hardly formed an inclusion complex. Instead, they formed a [2]rotaxane-like inclusion complex through the water-mediated dynamic B-O bond cleavage/reformation of the spiroborate groups of the helicate, which enhanced the conformational flexibility of the helicate to enlarge the bisporphyrin cavity and form an inclusion complex. Based on the X-ray crystal structure of a unique pacman-like 1:1 inclusion complex between the helicate and an ammonium cation as well as the molecular dynamics simulation results, a plausible mechanism for the inclusion of a planar aromatic guest within the helicate is also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c01155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!