Resonant-based sensors are attractive optical structures due to the easy detection of shifts in the resonance location in response to variations in the analyte refractive index (RI) in comparison to non-resonant-based sensors. In particular, due to the rapid progress of nanostructures fabrication methods, the manufacturing of subwavelength and nano-scale gratings in a large area and at a low cost has become possible. A comparative study is presented involving analysis and experimental work on several subwavelength and nanograting structures, highlighting their nano-scale features' high potential in biosensing applications, namely: (i) Thin dielectric grating on top of thin metal film (TDGTMF), which can support the excitation of extended surface plasmons (ESPs), guided mode resonance, or leaky mode; (ii) reflecting grating for conventional ESP resonance (ESPR) and cavity modes (CMs) excitation; (iii) thick dielectric resonant subwavelength grating exhibiting guided mode resonance (GMR) without a waveguide layer. Among the unique features, we highlight the following: (a) Self-referenced operation obtained using the TDGTMF geometry; (b) multimodal operation, including ESPR, CMs, and surface-enhanced spectroscopy using reflecting nanograting; (c) phase detection as a more sensitive approach in all cases, except the case of reflecting grating where phase detection is less sensitive than intensity or wavelength detection. Additionally, intensity and phase detection modes were experimentally demonstrated using off-the-shelf grating-based optical compact discs as a low-cost sensors available for use in a large area. Several flexible designs are proposed for sensing in the visible and infrared spectral ranges based on the mentioned geometries. In addition, enhanced penetration depth is also proposed for sensing large entities such as cells and bacteria using the TDGTMF geometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271722 | PMC |
http://dx.doi.org/10.3390/s21134523 | DOI Listing |
Blood
January 2025
Hospital Santa Creu i Sant Pau, Barcelona, Spain.
CD30-directed CART cell therapy (CART30) has limited efficacy in relapsed or refractory patients with CD30+ lymphoma, with a low proportion of durable responses. We have developed an academic CART30 cell product (HSP-CAR30) by combining strategies to improve performance. HSP-CAR30 targets a proximal epitope within the non-soluble part of CD30, and the manufacturing process includes a modulation of ex vivo T cell activation, as well as the addition of interleukin-21 to IL-7 and IL-15 to promote stemness of T cells.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.
View Article and Find Full Text PDFMol Oncol
January 2025
Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria.
Late-line treatment in metastatic colorectal cancer (mCRC) can improve prognosis. However, not every patient has a benefit and may experience severe side effects. Thus, predictive/prognostic biomarkers are urgently needed.
View Article and Find Full Text PDFFoot Ankle Int
January 2025
Howard Head Sports Medicine at Vail Health, Vail, CO, USA.
Background: Activity level is a benchmark to document patient recovery; however, there is a lack of instrumentation to measure activity level specific to the foot and ankle. The purpose of this study was to develop a foot and ankle activity level scale (FAALS) instrument that will serve as an effective clinical tool for practitioners by assigning an activity level to patients.
Methods: This was a 4-phase study with 3 rounds of data collection (n = 1432).
Front Plant Sci
January 2025
Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Smart farming is a hot research area for experts globally to fulfill the soaring demand for food. Automated approaches, based on convolutional neural networks (CNN), for crop disease identification, weed classification, and monitoring have substantially helped increase crop yields. Plant diseases and pests are posing a significant danger to the health of plants, thus causing a reduction in crop production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!