Zika virus (ZIKV) infection can cause severe neurological disorders, including Guillain-Barre syndrome and meningoencephalitis in adults and microcephaly in fetuses. Here, we reveal that laminin receptor 1 (LAMR1) is a novel host resistance factor against ZIKV infection. Mechanistically, we found that LAMR1 binds to ZIKV envelope (E) protein its intracellular region and attenuates E protein ubiquitination through recruiting the deubiquitinase eukaryotic translation initiation factor 3 subunit 5 (EIF3S5). We further found that the conserved G282 residue of E protein is essential for its interaction with LAMR1. Moreover, a G282A substitution abolished the binding of E protein to LAMR1 and inhibited LAMR1-mediated E protein deubiquitination. Together, our results indicated that LAMR1 represses ZIKV infection through binding to E protein and attenuating its ubiquitination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293954PMC
http://dx.doi.org/10.1080/21505594.2021.1948261DOI Listing

Publication Analysis

Top Keywords

zikv infection
12
zika virus
8
envelope protein
8
protein ubiquitination
8
binding protein
8
protein
7
lamr1
6
lamr1 restricts
4
restricts zika
4
infection
4

Similar Publications

Background: Urban arboviruses pose a significant global burden, particularly in tropical regions like Brazil. São Sebastião, a lower-middle-class urban area just 26 km from the Brazilian capital, is an endemic area for dengue. However, asymptomatic cases may obscure the actual extent of the disease.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection.

Viruses

January 2025

Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA.

Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy.

View Article and Find Full Text PDF

Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues.

View Article and Find Full Text PDF

Congenital Zika Syndrome: Insights from Integrated Proteomic and Metabolomic Analysis.

Biomolecules

December 2024

Department of Immunology (LIH), Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415-Butantã, São Paulo 05508-000, SP, Brazil.

In this study, we investigated the role of extracellular vesicles (EVs) in the pathogenesis of Congenital Zika Syndrome (CZS). Previous studies have highlighted the role of EVs in intercellular communication and the modulation of biological processes during viral infections, motivating our in-depth analysis. Our objective was to identify specific molecular signatures in the EVs of patients with CZS, focusing on their potential as biomarkers and on cellular pathways affected by the infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!