Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H or Li conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c01594DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
mechanics ionics
4
ionics optics
4
optics metal-organic
4
metal-organic framework
4
framework coordination
4
coordination polymer
4
glasses
4
polymer glasses
4
glasses melt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!