A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal Correlates to Monaural Edge Pitch in the Distribution of Interspike Interval Statistics in the Auditory Nerve. | LitMetric

Temporal Correlates to Monaural Edge Pitch in the Distribution of Interspike Interval Statistics in the Auditory Nerve.

eNeuro

Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, KU Leuven, Leuven B-3000, Belgium

Published: August 2021

Pitch is a perceptual attribute enabling perception of melody. There is no consensus regarding the fundamental nature of pitch and its underlying neural code. A stimulus which has received much interest in psychophysical and computational studies is noise with a sharp spectral edge. High-pass (HP) or low-pass (LP) noise gives rise to a pitch near the edge frequency (monaural edge pitch; MEP). The simplicity of this stimulus, combined with its spectral and autocorrelation properties, make it an interesting stimulus to examine spectral versus temporal cues that could underly its pitch. We recorded responses of single auditory nerve (AN) fibers in chinchilla to MEP-stimuli varying in edge frequency. Temporal cues were examined with shuffled autocorrelogram (SAC) analysis. Correspondence between the population's dominant interspike interval and reported pitch estimates was poor. A fuller analysis of the population interspike interval distribution, which incorporates not only the dominant but all intervals, results in good matches with behavioral results, but not for the entire range of edge frequencies that generates pitch. Finally, we also examined temporal structure over a slower time scale, intermediate between average firing rate and interspike intervals, by studying the SAC envelope. We found that, in response to a given MEP stimulus, this feature also systematically varies with edge frequency, across fibers with different characteristic frequency (CF). Because neural mechanisms to extract envelope cues are well established, and because this cue is not limited by coding of stimulus fine-structure, this newly identified slower temporal cue is a more plausible basis for pitch than cues based on fine-structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387151PMC
http://dx.doi.org/10.1523/ENEURO.0292-21.2021DOI Listing

Publication Analysis

Top Keywords

interspike interval
12
edge frequency
12
pitch
9
monaural edge
8
edge pitch
8
auditory nerve
8
temporal cues
8
edge
7
temporal
5
stimulus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!