Aim: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5).

Materials And Methods: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD).

Results: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable.

Conclusion: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.

Download full-text PDF

Source
http://dx.doi.org/10.5414/NP301393DOI Listing

Publication Analysis

Top Keywords

patients lgmd
8
lgmd
5
muscle inflammatory
4
inflammatory pattern
4
pattern alpha-
4
alpha- gamma-sarcoglycanopathies
4
gamma-sarcoglycanopathies aim
4
immune
4
aim immune
4
immune system
4

Similar Publications

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Introduction: A 20 kDa fragment at the N-terminus of titin is highly excreted in the urine of patients with Duchenne muscular dystrophy (DMD), making urine titin a prominent biomarker for muscle breakdown. This N-terminal fragment is presumed to be a product of degradation by a protein-degrading enzyme, calpain 3; however, whether calpain 3 is required remains unclear. We aimed to determine whether urine titin elevation occurs in the absence of calpain 3.

View Article and Find Full Text PDF
Article Synopsis
  • Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is a rare genetic muscle disorder caused by mutations in the CAPN3 gene, leading to progressive muscle weakness.
  • A case study of a 17-year-old boy with LGMDR1 revealed he developed a desmoplastic small round cell tumor (DSRCT), a rare and aggressive type of cancer, confirmed through molecular tests.
  • Despite thorough genetic testing, no known childhood cancer predisposition genes were found, highlighting the need for more research into the potential cancer risks associated with LGMDR1.
View Article and Find Full Text PDF

Development of differential diagnostic models for distinguishing between limb-girdle muscular dystrophy and idiopathic inflammatory myopathy.

Arthritis Res Ther

December 2024

Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.

Objective: Limb-girdle muscular dystrophy (LGMD) is usually confused with idiopathic inflammatory myopathy (IIM) in clinical practice. Our study aimed to establish convenient and reliable diagnostic models for distinguishing between LGMD and IIM.

Methods: A total of 71 IIM patients, 24 LGMDR2 patients and 22 LGMDR1 patients diagnosed at our neuromuscular center were enrolled.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary myopathies involve several hundred genetic variants, with Limb-girdle muscular dystrophies (LGMDs) being a diverse group of disorders linked to more than 30 genes, characterized primarily by limb weakness.
  • The study analyzed 2,372 patients across 21 countries to assess the prevalence of LGMD and Pompe disease through next-generation sequencing (NGS), finding that 11% had pathogenic genetic variants, with a high diagnostic effectiveness for LGMD (86.2%).
  • The findings emphasize the importance of including specific genes in NGS panels for diagnosing LGMW, contributing to a better understanding of LGMD and aiding in the identification of late-onset Pompe disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!