Co(II) complexes bearing amine-bridged bis(phenolato) complexes have been synthesized through reactions of bis(phenols) with CoCl or Co(OAc). Oxidation of the Co(II) complex with air resulted in partial oxidation, generating mixed valence Co(II/III) complexes and . In addition, due to the presence of alkali compounds (KOAc and NaOMe), and formed as Co-alkali metal heterometallic complexes, which are the first example of mixed valence Co(II/III)-M(I) (M = K or Na) complexes. Complexes showed good activity in the cycloaddition of epoxides and CO under atmospheric pressure, generating cyclic carbonates in 40-99% yields. Co(II/III)-Na(I) complex performed better in reactions of bulkier substrates, underlining the enhanced activity of mixed valence Co-alkali metal heterometallic complexes. On the contrary, complex showed limited activity in copolymerization of epoxide and CO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c01542 | DOI Listing |
J Phys Chem Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology (Scarborough), University of Toronto, Toronto, ON, Canada.
Recent research has identified sex-dependent links between risk taking behaviors, approach-avoidance bias and alcohol intake. However, preclinical studies have typically assessed alcohol drinking using a singular dimension of intake (i.e.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:
The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!