The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice gene was isolated and functionally characterized. The was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment. The OsERF115/AP2EREBP110 protein targeted to nuclei and suppressed the ABA-induced transcriptional activation of promoter in rice protoplasts. Overexpression of enhanced thermotolerance of seeds and vegetative growth stage plants. The overexpressing (OE) plants exhibited higher proline level and increased expression of a proline biosynthesis gene. Phenotyping of water use dynamics of the individual plant indicates that the -OE plant exhibited better water saving traits under heat and drought combined stress. Our combined results suggest the potential use of as a candidate gene for genetic engineering approaches to develop heat and drought stress-tolerant crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269390 | PMC |
http://dx.doi.org/10.3390/ijms22137181 | DOI Listing |
Front Plant Sci
December 2024
International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
In recent years, the global rise in temperatures has led to drought and heat becoming major environmental stresses that limit plant growth. Previous research has demonstrated the potential of in augmenting plant stress resistance. However, specific studies on its effects and underlying mechanisms in cuttings of , and Planch are relatively limited.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Forestry and Grasslands, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:
Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.
View Article and Find Full Text PDFIn plants, the nonproteinogenic amino acid β-alanine plays a role in response to hypoxia, flooding, drought, heat, and heavy metal stress conditions. It is also a key intermediate in the synthesis of essential molecules including vitamin B5 and coenzyme A (CoA) through the condensation reaction with pantoate. While the syntheses of pantoate, vitamin B5, and CoA appear to be conserved across plants and bacteria, the synthesis of β-alanine is not.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France.
Urban vegetation provides many ecosystem services like heat island mitigation. However, urban trees are subjected to the stresses that they are meant to alleviate, with drought being a main constraint. We investigated the drought response strategy of plane trees (Platanus × hispanica), focusing on stomatal regulation and metabolic remodelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!