miRNAs are involved in various biological processes, including adaptive responses to abiotic stress. To understand the role of miRNAs in the response to ABA, ABA-responsive miRNAs were identified by small RNA sequencing in wild-type , as well as in , , and mutants. We identified 10 novel miRNAs in WT after ABA treatment, while in , , and mutants, three, seven, and nine known miRNAs, respectively, were differentially expressed after ABA treatment. One novel miRNA (miRn-8) was differentially expressed in the mutant. Potential target genes of the miRNA panel were identified using psRNATarget. Sequencing results were validated by quantitative RT-PCR of several known and novel miRNAs in all genotypes. Of the predicted targets of novel miRNAs, seven target genes of six novel miRNAs were further validated by 5' RLM-RACE. Gene ontology analyses showed the potential target genes of ABA-responsive known and novel miRNAs to be involved in diverse cellular processes in plants, including development and stomatal movement. These outcomes suggest that a number of the identified miRNAs have crucial roles in plant responses to environmental stress, as well as in plant development, and might have common regulatory roles in the core ABA signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268864 | PMC |
http://dx.doi.org/10.3390/ijms22137153 | DOI Listing |
Pharmaceutics
December 2024
The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure.
View Article and Find Full Text PDFPathogens
December 2024
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
is a parasite transmitted by mosquitoes and can cause a neglected tropical disease called Lymphatic filariasis. However, the genome of was not well studied, making novel drug development difficult. This study aims to identify microRNA, annotate protein function, and explore the pathogenic mechanism of by genome-wide analysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), 19171 Madrid, Spain.
Extracellular vesicles (EVs) in cerebrospinal fluid (CSF) represent a valuable source of biomarkers for central nervous system (CNS) diseases, offering new pathways for diagnosis and monitoring. However, existing methods for isolating EVs from CSF often prove to be labor-intensive and reliant on specialized equipment, hindering their clinical application. In this study, we present a novel, clinically compatible method for isolating EVs from CSF.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy.
Angiogenesis inhibition treatments are limited and are often too late for advanced gastric cancer (GC) patients, in whom its efficacy is reduced. New molecular biomarkers are needed to optimize therapy regimens. In regard to this framework, circulating miRNAs, with high sensitivity and specificity, could be useful biomarkers of GC.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea.
The increasing incidence and mortality rates of liver cancer have heightened the demand for the development of effective anticancer drugs with minimal side effects. In this study, the roles of exosomes derived from liver cancer stem cells (LCSCs) with PRELI (Protein of Relevant Evolutionary and Lymphoid Interest) modulation and their miRNAs were investigated to explore their therapeutic properties for liver cancer. Various techniques, such as miRNA profiling, microRNA transfection, overexpression, flow cytometry, Western blotting, and immunocytochemistry, were used to evaluate the effects of exosomes under PRELI up- and downregulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!