Local cooling of the brain as a therapeutic intervention is a promising alternative for patients with epilepsy who do not respond to medication.andstudies have demonstrated the seizure-suppressing effect of local cooling in various animal models. In our work, focal brain cooling in a bicuculline induced epilepsy model in rats is demonstrated and evaluated using a multimodal micro-electrocorticography (microECoG) device.We designed and experimentally tested a novel polyimide-based sensor array capable of recording microECoG and temperature signals concurrently from the cortical surface of rats. The effect of cortical cooling after seizure onset was evaluated using 32 electrophysiological sites and eight temperature sensing elements covering the brain hemisphere, where injection of the epileptic drug was performed. The focal cooling of the cortex right above the injection site was accomplished using a miniaturized Peltier chip combined with a heat pipe to transfer heat. Control of cooling and collection of sensor data was provided by a custom designed Arduino based electronic board. We tested the experimental setup using an agar gel model, and thenin Wistar rats.Spatial variation of temperature during the Peltier controlled cooling was evaluated through calibrated, on-chip platinum temperature sensors. We found that frequency of epileptic discharges was not substantially reduced by cooling the cortical surface to 30 °C, but was suppressed efficiently at temperature values around 20 °C. The multimodal array revealed that seizure-like ictal events far from the focus and not exposed to high drop in temperature can be also inhibited at an extent like the directly cooled area.Our results imply that not only the absolute drop in temperature determines the efficacy of seizure suppression, and distant cortical areas not directly cooled can be influenced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac15e6 | DOI Listing |
This paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.
View Article and Find Full Text PDFSapphire fiber Bragg gratings (SFBGs) are promising high-temperature sensors in many harsh environments, such as aviation, nuclear power, and furnaces. Here, we proposed and experimentally demonstrated a quasi-distributed high-temperature sensor based on an SFBG array sealed in an argon gas-infiltrated sapphire tube interrogated by using an InGaAs-based interrogator. An SFBG array including five SFBGs was inscribed using the femtosecond laser line-by-line method and sealed in an argon gas-infiltrated sapphire tube.
View Article and Find Full Text PDFTime-of-flight Lidars based on single-photon avalanche diode (SPAD) detector arrays are emerging as a strong candidate technology for long range three-dimensional imaging in challenging environmental conditions. However, reaching this bound requires the existence of an unbiased estimator, which does not necessarily exist for data acquired by realistic SPAD-based Lidar systems. Here, we extend our existing SPAD Lidar modelling framework to include a novel metric, which we term the 'Binomial Separation Criterion', as a means of quantifying whether a depth estimation algorithm will reach the Cramér-Rao bound (CRB).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.
This paper presents an in-pixel contrast enhancement circuit that performs image processing directly within the pixel circuit. The circuit leverages HyperFET, a hybrid device combining a MOSFET and a phase transition material (PTM), to enhance performance. It can be tuned for different modes of operation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!