A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of apple proliferation disease in Malus × domestica by near infrared reflectance analysis of leaves. | LitMetric

AI Article Synopsis

  • * Over two years, leaf samples from multiple orchards were analyzed, showing that the ability to distinguish infected trees improved, especially in autumn, even detecting infection in asymptomatic leaves.
  • * The analysis indicated that the key differences were linked to a reduction in carbohydrates and nitrogen-containing compounds in infected trees, suggesting that spectral analysis could be a valuable tool for detecting Apple Proliferation in smart farming.

Article Abstract

In this study near infrared spectroscopical analysis of dried and ground leaves was performed and combined with a multivariate data analysis to distinguish 'Candidatus Phytoplasma mali' infected from non-infected apple trees (Malus × domestica). The bacterium is the causative agent of Apple Proliferation, one of the most threatening diseases in commercial apple growing regions. In a two-year study, leaves were sampled from three apple orchards, at different sampling events throughout the vegetation period. The spectral data were analyzed with a principal component analysis and classification models were developed. The model performance for the differentiation of Apple Proliferation diseased from non-infected trees increased throughout the vegetation period and gained best results in autumn. Even with asymptomatic leaves from infected trees a correct classification was possible indicating that the spectral-based method provides reliable results even if samples without visible symptoms are analyzed. The wavelength regions that contributed to the differentiation of infected and non-infected trees could be mainly assigned to a reduction of carbohydrates and N-containing organic compounds. Wet chemical analyses confirmed that N-containing compounds are reduced in leaves from infected trees. The results of our study provide a valuable indication that spectral analysis is a promising technique for Apple Proliferation detection in future smart farming approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120178DOI Listing

Publication Analysis

Top Keywords

apple proliferation
16
infected non-infected
8
vegetation period
8
non-infected trees
8
leaves infected
8
infected trees
8
apple
6
analysis
5
leaves
5
trees
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!