The nanotube express: Delivering a stapled peptide to the cell surface.

J Colloid Interface Sci

Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore, Singapore. Electronic address:

Published: December 2021

Hypothesis: Carbon nanotubes (CNTs) represent a novel platform for cellular delivery of therapeutic peptides. Chemically-functionalized CNTs may enhance peptide uptake by improving their membrane targeting properties.

Experiments: Using coarse-grained (CG) molecular dynamics (MD) simulations, we investigate membrane interactions of a peptide conjugated to pristine and chemically-modified CNTs. As proof of principle, we focus on their interactions with PM2, an amphipathic stapled peptide that inhibits the E3 ubiquitin ligase HDM2 from negatively regulating the p53 tumor suppressor. CNT interaction with both simple planar lipid bilayers as well as spherical lipid vesicles was studied, the latter as a surrogate for curved cellular membranes.

Findings: Membrane permeation was rapid and spontaneous for both pristine and oxidized CNTs when unconjugated. This was slowed upon addition of a noncovalently attached peptide surface "sheath", which may be an effective way to slow CNT entry and avert membrane rupture. The CNT conjugates were observed to "desheath" their peptide layer at the bilayer interface upon insertion, leaving their cargo behind in the outer leaflet. This suggests that a synergy may exist to optimize CNT safety whilst enhancing the delivery efficiency of "hitchhiking" therapeutic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.07.023DOI Listing

Publication Analysis

Top Keywords

stapled peptide
8
peptide
6
nanotube express
4
express delivering
4
delivering stapled
4
peptide cell
4
cell surface
4
surface hypothesis
4
hypothesis carbon
4
carbon nanotubes
4

Similar Publications

Tyrosinase-Catalyzed Peptide Stapling Using para-Amino Phenylalanine and Tyrosine Anchoring Residues.

Angew Chem Int Ed Engl

January 2025

Second Military Medical University, School of Pharmacy, 325 Guohe Road, 200433, Shanghai, CHINA.

Peptide stapling techniques have historically relied on metal-catalyzed chemical reactions, with no examples using enzymes. Here, inspired by tyrosinase-mediated oxidation, we describe the efficient side-chain to side-chain coupling of p-amino phenylalanine (Z) and tyrosine (Y) amino acids using a commercially available tyrosinase. Stapling reactions between the i, i+3 to i, i+7 positions were all performed, proceeding in good conversion and under mild conditions compatible with various side chains, functional motifs and ring sizes, with the Z-Y product found to be more stable and obtained in a higher yield than the Y-Z product.

View Article and Find Full Text PDF

Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!