Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anaerobic digestion (AD) under psychrophilic temperature has only recently garnered deserved attention. In major parts of Europe, USA, Canada and Australia, climatic conditions are more suited for psychrophilic (<20 ℃) rather than mesophilic (35 - 37 ℃) and thermophilic (55 - 60 ℃) AD. Low temperature has adverse effects on important cellular processes which may render the cell biology inactive. Moreover, cold climate can also alter the physical and chemical properties of wastewater, thereby reducing the availability of substrate to microbes. Hence, the use of low temperature acclimated microbial biomass could overcome thermodynamic constraints and carry out flexible structural and conformational changes to proteins, membrane lipid composition, expression of cold-adapted enzymes through genotypic and phenotypic variations. Reduction in organic loading rate is beneficial to methane production under low temperatures. Moreover, modification in the design of existing reactors and the use of hybrid reactors have already demonstrated improved methane generation in the lab-scale. This review also discusses some novel strategies such as direct interspecies electron transfer (DIET), co-digestion of substrate, bioaugmentation, and bioelectrochemical system assisted AD which present promising prospects. While DIET can facilitate syntrophic electron exchange in diverse microbes, the addition of organic-rich co-substrate can help in maintaining suitable C/N ratio in the anaerobic digester which subsequently can enhance methane generation. Bioaugmentation with psychrophilic strains could reduce start-up time and ensure daily stable performance for wastewater treatment facilities at low temperatures. In addition to the technical discussion, the economic assessment and future outlook on psychrophilic AD are also highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!