In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration HS and NH. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.06% under the HS and NH loading rates of 53.59 g/m³·h while the empty bed residence time (EBRT) was 40.5 s. The theoretical maximum load was obtained by fitting the kinetic curve, and the value were 90.09 g HS m³·h and 172.41 g NH m³·h. Meanwhile, after treating with 720 ppm of NH, the average concentration of NO in the BTF circulating fluid was only 127.58 mg/L, indicating the better performance of secondary pollutants control. Microbiological analysis showed that Dokdonella, Micropruina, Candidatus_Alysiosphaera, Nakamurella and Thiobacillus possessed high abundance at the genus level, and their entire percentage in four BTF reactors were 62.87%, 46.32%, 47.98%, and 57.35% respectively. It is worthwhile that the genera Comamonas and Trichococcus with heterotrophic nitrification and aerobic denitrification capabilities and proportion of 3.66%, 1.45%, 5.43%, and 3.23% were observed in four reactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126608 | DOI Listing |
Molecules
December 2024
Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland.
Extracts from natural waste like bark or leaves are great sources of phytochemicals, which contain functional groups (hydroxyl, carboxylic, vinyl, allyl) attractive in terms of polymer synthesis. In this study, the synthesis of epoxy with an extract of Scots pine bark as a natural co-hardener was evaluated. Ultraviolet-visible (UV-Vis) spectroscopy was used for the identification of phytochemicals with conjugated dienes and quantification of TPC.
View Article and Find Full Text PDFBiol Futur
January 2025
Physics Department, Faculty of Science, Istanbul University, Istanbul, Türkiye.
Tree bark is an important natural polymer for sound absorption. The main components in the bark of different tree species are polymers with high molecular weight such as cellulose, hemicellulose, and lignin. The aim of this study is to determine the noise reduction coefficient (NRC), lignin, alcohol-benzene solubility (ABS), carbon (C), and nitrogen (N) contents in samples taken from the bark of different tree species-black locust (Robinia pseudoacacia), narrow-leaved ash (Fraxinus angustifolia), stone pine (Pinus pinea), silver lime (Tilia tomentosa), sweet chestnut (Castanea sativa), sessile oak (Quercus petraea), and maritime pine (Pinus pinaster) and to investigate the relationship between these chemical properties and sound absorption measurements.
View Article and Find Full Text PDFInsects
November 2024
Korea National Arboretum, Pocheon-si 11186, Gyeonggi-do, Republic of Korea.
Pine wilt disease, caused by the pinewood nematode, affects , Siebold and Zucc., and Parl. in South Korea.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.
Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!