Simultaneous segmentation and detection of liver tumors (hemangioma and hepatocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic resonance imaging (NCMRI) are crucial for the clinical diagnosis. However, it is still a challenging task due to: (1) the HCC information on NCMRI is insufficient makes extraction of liver tumors feature difficult; (2) diverse imaging characteristics in multi-modality NCMRI causes feature fusion and selection difficult; (3) no specific information between hemangioma and HCC on NCMRI cause liver tumors detection difficult. In this study, we propose a united adversarial learning framework (UAL) for simultaneous liver tumors segmentation and detection using multi-modality NCMRI. The UAL first utilizes a multi-view aware encoder to extract multi-modality NCMRI information for liver tumor segmentation and detection. In this encoder, a novel edge dissimilarity feature pyramid module is designed to facilitate the complementary multi-modality feature extraction. Secondly, the newly designed fusion and selection channel is used to fuse the multi-modality feature and make the decision of the feature selection. Then, the proposed mechanism of coordinate sharing with padding integrates the multi-task of segmentation and detection so that it enables multi-task to perform united adversarial learning in one discriminator. Lastly, an innovative multi-phase radiomics guided discriminator exploits the clear and specific tumor information to improve the multi-task performance via the adversarial learning strategy. The UAL is validated in corresponding multi-modality NCMRI (i.e. T1FS pre-contrast MRI, T2FS MRI, and DWI) and three phases contrast-enhanced MRI of 255 clinical subjects. The experiments show that UAL gains high performance with the dice similarity coefficient of 83.63%, the pixel accuracy of 97.75%, the intersection-over-union of 81.30%, the sensitivity of 92.13%, the specificity of 93.75%, and the detection accuracy of 92.94%, which demonstrate that UAL has great potential in the clinical diagnosis of liver tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2021.102154 | DOI Listing |
JACC Cardiovasc Imaging
January 2025
Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:
Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
J Clin Med
January 2025
Hospital Virgen de la Arrixaca, 30120 Murcia, Spain.
Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.
View Article and Find Full Text PDFJ Clin Med
December 2024
Seoul Medical Clinic, Seoul 02037, Republic of Korea.
: Timely detection and removal of colonic adenomas are critical for preventing colorectal cancer. : This study analyzed differences in colonic adenoma characteristics based on colonoscopy history by reviewing the medical records of 14,029 patients who underwent colonoscopy between January and June 2020 across 40 primary medical institutions in Korea. : Adenoma and advanced neoplasia characteristics varied significantly with colonoscopy history ( < 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
Bird species detection is critical for applications such as the analysis of bird population dynamics and species diversity. However, this task remains challenging due to local structural similarities and class imbalances among bird species. Currently, most deep learning algorithms focus on designing local feature extraction modules while ignoring the importance of global information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!