A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scenarios of potential vegetation distribution in the different gradient zones of Qinghai-Tibet Plateau under future climate change. | LitMetric

Scenarios of potential vegetation distribution in the different gradient zones of Qinghai-Tibet Plateau under future climate change.

Sci Total Environ

State Key Laboratory of Resources and Environment Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Published: November 2021

The spatial distribution of potential vegetation types in Qinghai-Tibet Plateau presents a significant vertical zonation. Explicating the vertical differences of potential vegetation distribution under future climate change in Qinghai-Tibet Plateau is an important issue for understanding the response of terrestrial ecosystem to climate change. Based on the observed climate data in 1981-2010 (T0), the scenario data of RCP 2.6, RCP 4.5 and RCP 8.5 released by CMIP5 in 2011-2040 (T1), 2041-2070 (T2) and 2071-2100 (T3), and the digital elevation model (DEM) data, the Holdridge life zone (HLZ) model has been improved to simulate the scenarios of potential vegetation distribution in the different gradient zones of Qinghai-Tibet plateau. The shift model of mean center has been improved to calculate the shift direction and distance of mean center in the potential vegetation types. The ecological diversity index was introduced to compute the ecological diversity change of potential vegetation. The simulated results show that there are 17 potential vegetation types in Qinghai-Tibet Plateau. Wet tundra, high-cold moist forest and nival are the major potential vegetation types and cover 56.26% of the total area of Qinghai-Tibet Plateau. Under the three scenarios, the nival would have the largest decreased area that would be decreased by 3.340 × 10 km per decade, and the high-cold wet forest would have the greatest increased area that would be increased by 3.340 × 10 km on average per decade from T0 to T3. The potential vegetation types distributed in the alpine zone would show the fastest change ratio (11.32% per decade) and that in low mountain and other zone would show the slowest change ratio (7.54% per decade) on average. The ecological diversity and patch connectivity of potential vegetation would be decreased by 0.108% and 0.290% per decade on average from T0 to T3. In general, the potential vegetation types distributed in the high elevation area generally have a higher sensitivity to climate change in Qinghai-Tibet plateau in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148918DOI Listing

Publication Analysis

Top Keywords

potential vegetation
44
qinghai-tibet plateau
28
vegetation types
24
climate change
16
vegetation distribution
12
ecological diversity
12
vegetation
11
potential
10
scenarios potential
8
distribution gradient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!