Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Constructed wetlands (CWs) usually exhibit limits in functional redundancy and diversity of microbial community contributing to lower performances of nutrients removal in decentralized domestic sewage treatment. To address this quandary, heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria was added in tidal flow CWs (TFCWs) developing for nitrogen (N) and phosphorus (P) removal. With addition of HN-AD bacteria, TFCWs could be setup more rapidly and obtained better removal efficiencies of 66.9%-70.1% total nitrogen (TN), and 88.2%-92.4% total phosphorus (TP) comparing with control systems (TN: 53.9%; TP: 83.9%) during stable operation. Typical-cycles variations showed that TFCWs with addition of HN-AD bacteria promoted NO-N and NH-N removal respectively under hydraulic retention time (HRT) of 14 h and 8 h with slight NO-N accumulation. Activated alumina (AA) coupled with HN-AD bacteria decreased P release and relieved its poor removal performance in CWs. Based on metagenomic taxa and functional annotation, Pseudomonas and Thauera played pivotal roles in N removal in TFCWs. Furthermore, gradient oxic environments by 8 h-HRT promoted co-occurrence of heterotrophic nitrifiers (mostly Pseudomonas stutzeri) and autotrophic nitrifiers (mostly Nitrosomonas europaea. and Nitrospira sp.) which potentially accelerated NH-N transformation by elevated nitrification and denitrification related genes (e. g. amoABC, hao, napA and nirS genes). Meanwhile, the addition of HN-AD bacteria stimulated nirA and gltD genes of N assimilation processes probably leading to NH-N directly removal. The conceptual model of multi-metabolism regulation by HN-AD process highlighted importance of glk, gap2 and PK genes in glycolysis pathway which were vital drivers to nutrients metabolism. Overall, this study provides insights into how ongoing HN-AD bacteria-addition effected microbial consortia and metabolic pathways, serving theoretical basis for its engineered applications of TFCWs in decentralized domestic sewage treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!