Skeletal muscle atrophy can result from a range of physiological conditions, including denervation, immobilization, hindlimb unweighting, and aging. To better characterize the molecular genetic events of atrophy, a microarray analysis revealed that FGGY carbohydrate kinase domain containing (Fggy) is expressed in skeletal muscle and is induced in response to denervation. Bioinformatic analysis of the Fggy gene locus revealed two validated isoforms with alternative transcription initiation sites that we have designated Fggy-L-552 and Fggy-S-387. Additionally, we cloned two novel alternative splice variants, designated Fggy-L-482 and Fggy-S-344, from cultured muscle cells suggesting that at least four Fggy splice variants are expressed in skeletal muscle. Quantitative RT-PCR was performed using RNA isolated from muscle cells and primers designed to distinguish the four alternative Fggy transcripts and found that the Fggy-L transcripts are more highly expressed during myoblast differentiation, while the Fggy-S transcripts show relatively stable expression in proliferating myoblasts and differentiated myotubes. Confocal fluorescent microscopy revealed that the Fggy-L variants appear to localize evenly throughout the cytoplasm, while the Fggy-S variants produce a more punctuate cytoplasmic localization pattern in proliferating muscle cells. Finally, ectopic expression of Fggy-L-552 and Fggy-S-387 resulted in inhibition of muscle cell differentiation and attenuation of the MAP kinase and Akt signaling pathways. The identification and characterization of novel genes such as Fggy helps to improve our understanding of the molecular and cellular events that lead to atrophy and may eventually result in the identification of new therapeutic targets for the treatment of muscle wasting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2021.145836DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
muscle cells
12
muscle
9
fggy carbohydrate
8
carbohydrate kinase
8
kinase domain
8
map kinase
8
kinase akt
8
akt signaling
8
expressed skeletal
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!