Multifunctional nanocarriers have been found as potential candidate for the targeted drug delivery and imaging applications. Herein, we have developed a biocompatible and pH-responsive manganese oxide nanocuboid system, surface modified with poly (ethylene glycol) bis(amine) and functionalized with biotin (Biotin-PEG-MNCs), for an efficient and targeted delivery of an anticancer drug (gemcitabine, GEM) to the human breast cancer cells. GEM-loaded Biotin-PEG@MNCs showed high drug loading efficiency, controlled release of GEM and excellent storage stability in the physiological buffers and different temperature conditions. GEM-loaded Biotin-PEG@MNCs showed dose- and time-dependent decrease in the viability of human breast cancer cells. Further, it exhibited significantly higher cell growth inhibition than pure GEM which suggested that Biotin-PEG@MNCs has efficiently delivered the GEM into cancerous cells. The role of biotin in the uptake was proved by the competitive binding-based cellular uptake study. A significant decrease in the amount of manganese was observed in biotin pre-treated cancer cells as compared to biotin untreated cancer cells. In MRI studies, Biotin-PEG-MNCs showed both longitudinal and transverse relaxivity about 0.091 and 7.66 mM s at 3.0 T MRI scanner, respectively. Overall, the developed Biotin-PEG-MNCs presents a significant potential in formulation development for cancer treatment via targeted drug delivery and enhanced MRI contrast imaging properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!