The existing study is embarked on investigating the antineoplastic activity of green tea essential oil (GTO) as a natural product. In this regard, GTO was encapsulated in cationic chitosan, nitrogenous-polysaccharide derived by partial deacetylation of chitin, nanoparticles (CS NPs) with entrapment efficiency (EE%) of 81.4 ± 5.7% and a mean particle-size of 30.7 ± 1.13 nm. Moreover, the cytotoxic effect of CS/GTO NPs was evaluated versus human liver (HepG-2), breast (MCF-7) and colon (HCT-116) cancer cell-lines and exhibited a positive impact when compared to bare CS NPs by 3, 2.3 and 1.7 fold for the three cell lines, respectively. More interestingly, CS/GTO NPs were complexed with technethium-99m (Tc) radionuclide. With a view to achieve a successful radiolabeling process, different parameters were optimized resulting in a radiolabeling efficiency (RE%) of 93.4 ± 1.2%. Radiopharmacokinetics of the radiolabeled NPs in healthy mice demonstrated a reticuloendothelial system (RES) evading and long blood circulation time up to 4 h. On the other hand, the biodistribution profile in solid tumor models showed 20.3 ± 2.1% localization and cancer cell targeting within just 30 min. On the whole, the reported results encourage the potential use of CS/GTO NPs as a side effect-free anticancer agent and its Tc-analogue as a novel CS/GTO NPs-based diagnostic-radiopharmaceutical for cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.07.077 | DOI Listing |
Int J Biol Macromol
September 2021
Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt. Electronic address:
The existing study is embarked on investigating the antineoplastic activity of green tea essential oil (GTO) as a natural product. In this regard, GTO was encapsulated in cationic chitosan, nitrogenous-polysaccharide derived by partial deacetylation of chitin, nanoparticles (CS NPs) with entrapment efficiency (EE%) of 81.4 ± 5.
View Article and Find Full Text PDFInt J Biol Macromol
April 2019
Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt. Electronic address:
Essential oils (EOs) such as Peppermint oil (PO) and Green Tea oil (GTO) have extensively been reported for their nutritional and biomedical properties. To overcome the sensitivity of EOs to the environmental conditions, nano-encapsulation has emerged as a method to address this limitation. In this work, PO and GTO were encapsulated in chitosan nanoparticles (CS NPs) following emulsification/ionic gelation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!