Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Salmonella spp. are a foodborne pathogen frequently found in raw meat, egg products, and milk. Salmonella is responsible for numerous outbreaks, becoming a frequent major public-health concern. Many studies have recently reported handheld and rapid devices for microbial detection. This study explored a smartphone-based lateral-flow assay analyzer which employed machine-learning algorithms to detect various concentrations of Salmonella spp. from the test line images. When cell numbers are low, a faint test line is difficult to detect, leading to misleading results. Hence, this study focused on the development of a smartphone-based lateral-flow assay (SLFA) to distinguish ambiguous concentrations of test line with higher confidence. A smartphone cradle was designed with an angled slot to maximize the intensity, and the optimal direction of the optimal incident light was found. Furthermore, the combination of color spaces and the machine-learning algorithms were applied to the SLFA for classifications. It was found that the combination of L*a*b and RGB color space with SVM and KNN classifiers achieved the high accuracy (95.56%). A blind test was conducted to evaluate the performance of devices; the results by machine-learning techniques reported less error than visual inspection. The smartphone-based lateral-flow assay provided accurate interpretation with a detection limit of 5 × 10 CFU/mL commercially available lateral-flow assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2021.106288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!