A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp. | LitMetric

Salmonella spp. are a foodborne pathogen frequently found in raw meat, egg products, and milk. Salmonella is responsible for numerous outbreaks, becoming a frequent major public-health concern. Many studies have recently reported handheld and rapid devices for microbial detection. This study explored a smartphone-based lateral-flow assay analyzer which employed machine-learning algorithms to detect various concentrations of Salmonella spp. from the test line images. When cell numbers are low, a faint test line is difficult to detect, leading to misleading results. Hence, this study focused on the development of a smartphone-based lateral-flow assay (SLFA) to distinguish ambiguous concentrations of test line with higher confidence. A smartphone cradle was designed with an angled slot to maximize the intensity, and the optimal direction of the optimal incident light was found. Furthermore, the combination of color spaces and the machine-learning algorithms were applied to the SLFA for classifications. It was found that the combination of L*a*b and RGB color space with SVM and KNN classifiers achieved the high accuracy (95.56%). A blind test was conducted to evaluate the performance of devices; the results by machine-learning techniques reported less error than visual inspection. The smartphone-based lateral-flow assay provided accurate interpretation with a detection limit of 5 × 10 CFU/mL commercially available lateral-flow assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2021.106288DOI Listing

Publication Analysis

Top Keywords

smartphone-based lateral-flow
16
salmonella spp
12
lateral-flow assay
12
development smartphone-based
8
machine-learning algorithms
8
lateral-flow
5
lateral-flow imaging
4
imaging system
4
machine-learning
4
system machine-learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!