Aiming at the problem that the weak features of non-stationary vibration signals are difficult to extract under strong background noise, a multi-layer noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed. First, the original vibration signal is decomposed by EEMD, and the main intrinsic modal components (IMF) are selected using comprehensive evaluation indicators; the second layer of filtering uses wavelet threshold denoising (WTD) to process the main IMF components. Finally, the virtual noise channel is introduced, and FastICA is used to de-noise and unmix the IMF components processed by the WTD. Next, perform spectral analysis on the separated useful signals to highlight the fault frequency. The feasibility of the proposed method is verified by simulation, and it is applied to the extraction of weak signals of faulty bearings and worn polycrystalline diamond compact bits. The analysis of vibration signals shows that this method can efficiently extract weak fault characteristic information of rotating machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289029PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254747PLOS

Publication Analysis

Top Keywords

based ensemble
8
ensemble empirical
8
empirical mode
8
mode decomposition
8
rotating machinery
8
vibration signals
8
imf components
8
application multi-layer
4
multi-layer denoising
4
denoising based
4

Similar Publications

Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.

Sensors (Basel)

January 2025

United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.

Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.

View Article and Find Full Text PDF

Hydroperoxymethyl thioformate (or HPMTF) is a compound relevant to the chemistry of sulfur in the marine atmosphere. The chemical cycling of this molecule in the atmosphere is still uncertain due in part to the lack of accurate knowledge of its photolytic behavior. Only approximations based on the properties of its chromophores are used in previous studies.

View Article and Find Full Text PDF

Polydeoxyribonucleotides (PDRNs) and polynucleotides (PNs) are similar DNA-derived biopolymers that have garnered significant scientific attention since the 1990s for their potential applications in wound healing and skin rejuvenation. These biopolymers exhibit a broad molecular weight (MW) range, typically spanning from 50 to 1500 kDa. However, recent studies have expanded this range to encompass fragments as small as 1 kDa and as large as 10,000 kDa.

View Article and Find Full Text PDF

Zipper Pattern: An Investigation into Psychotic Criminal Detection Using EEG Signals.

Diagnostics (Basel)

January 2025

Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Turkey.

Electroencephalography (EEG) signal-based machine learning models are among the most cost-effective methods for information retrieval. In this context, we aimed to investigate the cortical activities of psychotic criminal subjects by deploying an explainable feature engineering (XFE) model using an EEG psychotic criminal dataset. In this study, a new EEG psychotic criminal dataset was curated, containing EEG signals from psychotic criminal and control groups.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!