Disconnection-Mediated Transition in Segregation Structures at Twin Boundaries.

J Phys Chem Lett

Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.

Published: July 2021

Twin boundaries play an important role in the thermodynamics, stability, and mechanical properties of nanocrystalline metals. Understanding their structure and chemistry at the atomic scale is key to guide strategies for fabricating nanocrystalline materials with improved properties. We report an unusual segregation phenomenon at gold-doped platinum twin boundaries, which is arbitrated by the presence of disconnections, a type of interfacial line defect. By using atomistic simulations, we show that disconnections containing a stacking fault can induce an unexpected transition in the interfacial-segregation structure at the atomic scale, from a bilayer, alternating-segregation structure to a trilayer, segregation-only structure. This behavior is found for faulted disconnections of varying step heights and dislocation characters. Supported by a structural analysis and the classical Langmuir-McLean segregation model, we reveal that this phenomenon is driven by a structurally induced drop of the local pressure across the faulted disconnection accompanied by an increase in the segregation volume.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c02189DOI Listing

Publication Analysis

Top Keywords

twin boundaries
12
atomic scale
8
disconnection-mediated transition
4
segregation
4
transition segregation
4
segregation structures
4
structures twin
4
boundaries twin
4
boundaries play
4
play role
4

Similar Publications

Nanotwin-Induced Ferrimagnetism in an Antiferromagnetic CrO Thin Film on the SrTiO Substrate.

ACS Nano

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

Nanotwinned materials have recently attracted intense interest since they often exhibit excellent mechanical properties that are far superior to those of the corresponding single crystals. However, how nanotwinned structures affect the physical properties of functional materials remains almost unexplored. In this study, we demonstrate ferrimagnetism in a nanotwinned antiferromagnetic CrO thin film.

View Article and Find Full Text PDF

Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns.

View Article and Find Full Text PDF

In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.

View Article and Find Full Text PDF

We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.

View Article and Find Full Text PDF

Highly efficient electroplating of (220)-oriented nano-twinned copper in methanesulfonic copper baths.

Mater Horiz

January 2025

Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.

The formation of a high-density nanotwinned structure in copper deposits is presently acknowledged as a paramount goal for enhancing the material characteristics of copper. However, the conventional manufacturing processes often involve the incorporation of organic additives, resulting in consequential impurity effects and aging concerns. In this work, we introduce a high-rate approach to fabricate (220)-orientation nanotwinned copper foils in a concentrated methanesulfonate copper solution with mere amount of chloride ions as additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!