Plant-based protein sources have a characteristic aroma that limits their usage in various meat-alternative formulations. Despite being the most popular plant-based protein, the allergenicity of soy protein severely restricts the potential adoption of soy protein as an animal substitute. Thereby, allergen-free plant-protein sources need to be characterized. Herein, we demonstrate a rapid solid-phase-microextraction gas-chromatography/mass-spectrometry (SPME-GC/MS) technique for comparing the volatile aroma profile concentration of two different allergen-free plant-protein sources (brown rice and pea) and comparing them with soy protein. The extraction procedure consisted of making a 1:7 / aqueous plant protein slurry, and then absorbing the volatile compounds on an SPME fibre under agitation for 10 min at 40 °C, which was subsequently injected onto a GC column coupled to an MS system. Observed volatile concentrations were used in conjunction with odour threshold values to generate a Total Volatile Aroma Score for each protein sample. A total of 76 volatile compounds were identified. Aldehydes and furans were determined to be the most dominant volatiles present in the plant proteins. Both brown rice protein and pea protein contained 64% aldehydes and 18% furans, with minor contents of alcohols, ketones and other compounds. On the other hand, soy protein consisted of fewer aldehydes (46%), but a more significant proportion of furans (42%). However, in terms of total concentration, brown rice protein contained the highest intensity and number of volatile compounds. Based on the calculated odour activity values of the detected compounds, our study concludes that pea proteins could be used as a suitable alternative to soy proteins in applications for allergen-free vegan protein products without interfering with the taste or flavour of the product.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271896PMC
http://dx.doi.org/10.3390/molecules26134104DOI Listing

Publication Analysis

Top Keywords

volatile compounds
16
brown rice
16
soy protein
16
protein
13
rice protein
12
odour activity
8
activity values
8
plant proteins
8
plant-based protein
8
allergen-free plant-protein
8

Similar Publications

Increasing evidence demonstrates a robust link between environmental pollutants and allergic reactions, with air and indoor pollution exacerbating respiratory allergies and climate change intensifying seasonal allergies. Comprehensive action, including government regulations, public awareness, and individual efforts, is essential to mitigate pollution's impact on allergies and safeguard public health and ecological balance. Recent findings indicate a strong correlation between environmental pollutants and allergic reactions, with air pollution from vehicular emissions and industrial activities exacerbating respiratory allergies like asthma and allergic rhinitis.

View Article and Find Full Text PDF

Effective Strategies for Understanding Meat Flavor: A Review.

Food Sci Anim Resour

January 2025

Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Korea.

This review provides an effective strategy for understanding meat flavor. Understanding the taste of meat is essential for improving meat quality, and the taste should be analyzed based on complex chemical research to identify various factors that impact the composition, formation, and development of meat. To address flavor chemistry in meat, the discussion focuses on the major compounds responsible for the characteristic flavors of different meats, such as lipids, proteins, and Maillard reaction products.

View Article and Find Full Text PDF

Cancer is ranked as the top cause of premature mortality. Volatile organic compounds (VOCs) are produced from catalytic peroxidation by reactive oxygen species (ROS) and have become a highly attractive non-invasive cancer screening approach. For future clinical applications, however, the correlation between cancer hallmarks and cancer-specific VOCs requires further study.

View Article and Find Full Text PDF

CEF642 as a Promising Biocontrol Agent for Cotton Disease Control.

J Agric Food Chem

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.

Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.

View Article and Find Full Text PDF

Thousand cankers disease (TCD) is a pathosystem comprised of Juglandacea spp., a pathogenic fungus Geosmithia morbida, and an insect vector, the walnut twig beetle (WTB) (Pityophthorus juglandis). Of the North American Juglans species, Juglans nigra is the most susceptible to TCD and has resulted in significant decline and mortality of urban and plantation trees in the western United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!