A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Graphene Nanoplatelets on Mechanical and Fire Performance of Flax Polypropylene Composites with Intumescent Flame Retardant. | LitMetric

Effects of Graphene Nanoplatelets on Mechanical and Fire Performance of Flax Polypropylene Composites with Intumescent Flame Retardant.

Molecules

Centre for Advanced Composite Materials, Faculty of Engineering, The University of Auckland, 314 Khyber Pass Road, Newmarket, Auckland 1142, New Zealand.

Published: July 2021

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax-PP composite has been simulated using Fire Dynamics Simulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271726PMC
http://dx.doi.org/10.3390/molecules26134094DOI Listing

Publication Analysis

Top Keywords

graphene nanoplatelets
8
flame retardant
8
tensile flexural
8
decomposition rate
8
effects graphene
4
nanoplatelets mechanical
4
mechanical fire
4
fire performance
4
performance flax
4
flax polypropylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!