Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6-10% by weight or nonwoven fabrics in 3-7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269839 | PMC |
http://dx.doi.org/10.3390/ma14133742 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia.
Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.
View Article and Find Full Text PDFEnviron Technol
January 2025
China State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
The study investigated the chlorine and fluorine contents in three types of industrial solid waste: textile, plastic, and paper waste, utilizing various analytical methods. Significant variations in the proportions of organic and inorganic chlorine were observed among the waste types. During heat treatment, the majority of chlorine converts to a volatile state, with fixed chlorine content showing a correlation with organic chlorine.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile Science and Engineering, Zhejiang Sci-Tech University, Zhejiang, China. Electronic address:
The development of degradable food packaging materials with hydrophobic and oleophobic properties is a key to focus in reducing plastic waste. Chitosan is gaining interest for its versatility and easy modification, but its application is limited by the poor hydrophobicity and oleophobicity. Using polymers to modify chitosan films has been shown as a promising approach to solve this issue.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.
This study investigates the reinforcement of cement paste with woven fabrics made from recycled poly(ethylene terephthalate) (PET) bottle yarn, aiming to enhance its mechanical properties while addressing PET waste. PET bottles were transformed into yarn with a denier of 3,593.8, strength of 91.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!