The structural optimization of manufacturable casting parts is still a challenging and time-consuming task. Today, topology optimization is followed by a manual reconstruction of the design proposal and a process assurance simulation to endorse the design proposal. Consequently, this process is iteratively repeated until it reaches a satisfying compromise. This article shows a method to combine structural optimization and process assurance results to generate automatically structure- and process-optimized die casting parts using implicit geometry modeling. Therefore, evaluation criteria are developed to evaluate the current design proposal and qualitatively measure the improvement of manufacturability between two iterations. For testing the proposed method, we use a cantilever beam as an example of proof. The combined iterative method is compared to manual designed parts and a direct optimization approach and evaluated for mechanical performance and manufacturability. The combination of topology optimization (TO) and process assurance (PA) results is automated and shows a significant enhancement to the manual reconstruction of the design proposals. Further, the improvement of manufacturability is better or equivalent to previous work in the field while using less computational effort, which emphasizes the need for suitable metamodels to significantly reduce the effort for process assurance and enable much shorter iteration times.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269844 | PMC |
http://dx.doi.org/10.3390/ma14133715 | DOI Listing |
Perioper Med (Lond)
January 2025
Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Background: The unfamiliar atmosphere of the operating room, waiting for anesthesia, and the process of surgery and anesthesia are some of the factors causing fear and anxiety in patients. It leads to physical and psychological pressure on patients. Better understanding of patients' feelings, beliefs, or fears and recording their experiences for optimal care after surgery is helpful.
View Article and Find Full Text PDFMed Phys
January 2025
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
Background: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments.
Purpose: This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT.
Int J Legal Med
January 2025
Department of Forensic Medicine, Monash University, Victoria, Australia.
Mortality data systems are upstream determinants of health, providing critical information on causes of death and population health trends and influencing health outcomes by shaping policies, research, and resource allocation. Moreover, the gender-related deaths of women and girls are significantly underrepresented or underrecognized in mortality data across many countries. This paper seeks to identify potential barriers and facilitators to improving the representation of femicide data.
View Article and Find Full Text PDFAquat Toxicol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!