Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318592 | PMC |
http://dx.doi.org/10.7554/eLife.68603 | DOI Listing |
Front Pharmacol
December 2024
The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
Backgrounds: Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
February 2025
Department of Nephropathy, Xi'an Central Hospital, Xi'an, China.
Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.
View Article and Find Full Text PDFRes Sq
December 2024
Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Nuclear deformation by osmotic shock or necrosis activates the cytosolic phospholipase A2 (cPla) nuclear shape sensing pathway, a key regulator of tissue inflammation and repair. Ca and inner nuclear membrane (INM) tension (T) are believed to mediate nucleoplasmic cPla activation. The concept implies that T persists long enough to stimulate cPla-INM adsorption.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2024
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India.
Introduction: Ischemic stroke (IS), a major cause of mortality and disability worldwide, remains a significant healthcare challenge due to limited therapeutic options. Ferroptosis, a distinct iron-dependent form of regulated cell death characterized by lipid peroxidation and oxidative stress, has emerged as a crucial mechanism in IS pathophysiology. This review explores the role of ferroptosis in IS and its potential for driving innovative therapeutic strategies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China.
Ferroptosis is a new type of cell death caused by redox imbalance mediated by iron-dependent lipid peroxidation, which is intimately linked to human disease. Circular RNA, characterized by covalently closed loop structure, has attracted much attention due to its involvement in various biological functions. However, little is known about the role of circRNA in ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!