Functional materials engineered to degrade upon triggering are in high demand due their potentially lower impact on the environment as well as their use in sensing and in medical applications. Here, stimuli-responsive polymers are prepared by decorating a self-immolative poly(dithiothreitol) backbone with pendant catechol units. The highly functional polymer is fashioned into stimuli-responsive gels, formed through pH-dependent catecholato-metal ion cross-links. The gels degrade in response to specific environmental changes, either by addressing the pH responsive, non-covalent, catecholato-metal complexes, or by addition of a thiol. The latter stimulus triggers end-to-end depolymerization of the entire self-immolative backbone through end-cap replacement via thiol-disufide exchanges. Gel degradation is visualized by release of a dye from the supramolecular gel as it itself is converted into smaller molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518080 | PMC |
http://dx.doi.org/10.1002/anie.202108698 | DOI Listing |
Nat Commun
January 2025
Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China. Electronic address:
Antibiotic resistance combined with bacteria internalization result in recurrent infections that seriously threaten human health. To overcome these problems, a pH/HO dual-responsive nanoparticle (COSBN@CFS@PS) that can target macrophages, exhibiting synergistic antibiotic and β-lactamase inhibitor activity, is reported. Chitosaccharides (COS) is covalently bound with benzenboronic acid pinacol ester and assemble with cefoxitin sodium salt (CFS) to form COSBN@CFS nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!