Recombinant adeno-associated viruses (AAVs) have emerged as the leading gene delivery platform owing to their nonpathogenic nature and long-term gene expression capability. The AAV capsid, in addition to protecting the viral genome, plays an important role in viral infectivity and gene transduction, indicating the value of the constituent viral proteins (VPs) being well-characterized as part of gene therapy development. However, the limited sample availability and sequence homology shared by the VPs pose challenges to adapt existing analytical methods developed for conventional biologics. In this study, we report the development of reversed-phase liquid chromatography/mass spectrometry-based methods for characterization of AAV capsid proteins at intact protein and peptide level with reduced sample consumptions. The developed methods allowed the measurement of VP expression with fluorescence detection and intact mass/post-translational modifications (PTMs) analysis through a benchtop time-of-flight mass spectrometer. The general applicability and validity of the methods for gene therapy product development were demonstrated by applying the optimized methods to multiple common AAV serotypes. A 1-h enzymatic digestion method was also developed using 1.25 μg of AAV VPs, providing >98% protein sequence coverage and reproducible relative quantification of various PTMs of the VPs. The efficient and sensitive analyses of AAV capsid proteins enabled by the reported methods provide further understanding and offer guidance in the development and manufacturing of AAV-related therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742267PMC
http://dx.doi.org/10.1089/hum.2021.046DOI Listing

Publication Analysis

Top Keywords

aav capsid
12
reversed-phase liquid
8
liquid chromatography/mass
8
intact protein
8
gene therapy
8
capsid proteins
8
methods
7
gene
5
aav
5
optimized reversed-phase
4

Similar Publications

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.

Life Sci

December 2024

College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:

Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!