Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.2417 | DOI Listing |
Physiol Plant
January 2025
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA.
The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.
View Article and Find Full Text PDFBackground: Dental caries is one of the most common non-communicable diseases in humans. Various interventions are available for the management, of which microinvasive techniques such as infiltration, sealants, glass ionomers, are novel and convenient. The purpose of this systematic review and meta-analysis was to compare microinvasive techniques with noninvasive or invasive treatment modalities in terms of effectiveness in halting interproximal caries lesion progression radiographically assessed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.
View Article and Find Full Text PDFBull Entomol Res
January 2025
Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany.
The canopy of forests as the 'last biotic frontier' has often been neglected in insect biodiversity studies because it is harder to access compared to the understorey, even in relatively well-known temperate ecosystems. We investigated the diversity, abundance, and body size patterns of macromoths (Lepidoptera) in the canopy and understorey in a central European deciduous forest. We collected moths at two sites during 19 trapping nights and three lunar phases between July and September 2021 using a weak ultraviolet light emitting diode (LED) lamp (LepiLED ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!