Background: EIF2A is an unconventional translation factor required for initiation of protein synthesis from non-AUG codons from a variety of transcripts, including oncogenes and stress related transcripts in mammalian cells. Its function in multicellular organisms has not been reported.
Results: Here, we identify and characterize mutant alleles of the CG7414 gene, which encodes the Drosophila EIF2A ortholog. We identified that CG7414 undergoes sex-specific splicing that regulates its male-specific expression. We characterized a Mi{Mic} transposon insertion that disrupts the coding regions of all predicted isoforms and is a likely null allele, and a PBac transposon insertion into an intron, which is a hypomorph. The Mi{Mic} allele is homozygous lethal, while the viable progeny from the hypomorphic PiggyBac allele are male sterile and female fertile. In dEIF2A mutant flies, sperm failed to individualize due to defects in F-actin cones and failure to form and maintain cystic bulges, ultimately leading to sterility.
Conclusions: These results demonstrate that EIF2A is essential in a multicellular organism, both for normal development and spermatogenesis, and provide an entrée into the elucidation of the role of EIF2A and unconventional translation in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885012 | PMC |
http://dx.doi.org/10.1002/dvdy.403 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFTransplantation
January 2025
Medical School, University of Western Australia, Perth, WA, Australia.
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK.
The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
December 2024
Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense.
View Article and Find Full Text PDFParasit Vectors
December 2024
Global Health and Tropical Medicine- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Tick-borne rickettsioses (TBR) are emerging, neglected, zoonoses, caused by intracellular α-proteobacteria of the genus Rickettsia, that pose a growing public health concern. The aim of the present study was to evaluate rickettsial infections in questing ticks collected from four different ecological areas in mainland Portugal.
Methods: Over a two-year period, a total of 707 questing ticks were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!