Dynamic disorder manifested in fluctuations of charge transfer integrals considerably hinders charge transport in high-mobility organic semiconductors. Accordingly, strategies for suppression of the dynamic disorder are highly desirable. In this study, we suggest a novel promising strategy for suppression of dynamic disorder-tuning the molecular electrostatic potential. Specifically, we show that the intensities of the low-frequency (LF) Raman spectra for crystalline organic semiconductors consisting of π-isoelectronic small molecules (i.e. bearing the same number of π electrons)-benzothieno[3,2-b][1]benzothiophene (BTBT), chrysene, tetrathienoacene (TTA) and naphtho[1,2-b:5,6-b']dithiophene (NDT)-differ significantly, indicating significant differences in the dynamic disorder. This difference is explained by suppression of the dynamic disorder in chrysene and NDT because of stronger intermolecular electrostatic interactions. As a result, guidelines for the increase of the crystal rigidity for the rational design of high-mobility organic semiconductors are suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01599kDOI Listing

Publication Analysis

Top Keywords

dynamic disorder
20
suppression dynamic
16
organic semiconductors
16
electrostatic interactions
8
high-mobility organic
8
disorder
5
dynamic
5
suppression
4
disorder electrostatic
4
interactions structurally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!