A small fraction of aerosol particles known as Ice-Nucleating Particles (INPs) have the potential to trigger ice formation in cloud droplets at higher temperatures than homogeneous freezing. INPs can strongly reduce the water content and albedo of shallow mixed-phase clouds and also influence the development of convective clouds. Therefore, it is important to understand which aerosol types serve as INPs and how effectively they nucleate ice. Using a combination of INP measurements and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), we quantify both the INP concentrations over a range of activation temperatures and the size-resolved composition. We show that the INP population of aerosol samples collected from an aircraft over the UK during July of 2017 is consistent with ice-nucleation on mineral dust below about -20 °C, but some other INP type must account for ice-nucleation at higher temperatures. Biological aerosol particles above ∼2 μm were detected based on visual detection of their morphological features in all the analysed samples at concentrations of at least 10 to 100 L in the boundary layer. We suggest that given the presence of biological material, it could substantially contribute to the enhanced ice-nucleation ability of the samples at above -20 °C. Organic material attached to mineral dust could be responsible for at least part of this enhancement. These results are consistent with a growing body of data which suggests mineral dust alone cannot explain the INP population in the mid-latitude terrestrial atmosphere and that biological ice nucleating particles are most likely important for cloud glaciation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262250PMC
http://dx.doi.org/10.1039/d1ea00003aDOI Listing

Publication Analysis

Top Keywords

mineral dust
12
ice-nucleating particles
8
aerosol particles
8
higher temperatures
8
inp population
8
-20 °c
8
particles
5
inp
5
mineral
4
mineral biological
4

Similar Publications

Understanding exposure risk using soil testing and GIS around an abandoned asbestos mine.

Ann Glob Health

January 2025

Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.

Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Thorium ore dust research applicable to mineral sands industry workers.

J Radiol Prot

January 2025

School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

Historically, radiation exposure to mineral sands workers arose primarily from intake of thorium associated with monazite dust generated in mineral separation plants. Research investigations in the 1990s provided greater insight into the characteristics of inhaled thorium ore dust and bioassay studies inferred that some workers had accumulated significant lung burdens of thorium. Recent changes to biokinetic models have increased the radiation dose assessed to arise from thorium intake, raising questions on the appropriateness of current assumptions used in exposure assessment and feasibility of further bioassay research.

View Article and Find Full Text PDF

Preparation and performance study of carboxymethylated Napier grass (Pennisetum purpureum) cellulose dust suppressant.

Int J Biol Macromol

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:

Coal mines generate significant amounts of dust during production, transportation, and stockpiling, leading to health hazards and environmental pollution. To address the inefficiencies and environmental impact of current chemical dust suppressants, a novel dust suppressant was developed utilizing cellulose derived from Napier grass (NG), modified through carboxymethylation, and supplemented with polyvinyl alcohol (PVA) and polyacrylamide (PAM). Orthogonal experiments identified the optimal ratio of sodium carboxymethyl cellulose (CMC), PAM, PVA, and octyl phenol polyoxyethylene ether (JFC-1) as 1:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!