The need to include the genetic variation within a population into a reference genome led to the concept of a genome sequence graph. Nodes of such a graph are labeled with DNA sequences occurring in represented genomes. Due to double-stranded nature of DNA, each node may be oriented in one of two possible ways, resulting in marking one end of the labeling sequence as in-side and the other as out-side. Edges join pairs of sides and reflect adjacency between node sequences in genomes constituting the graph. Linearization of a sequence graph aims at orienting and ordering graph nodes in a way that makes it more efficient for visualization and further analysis, e.g. access and traversal. We propose a new linearization algorithm, called ALIBI - Algorithm for Linearization by Incremental graph BuIlding. The evaluation shows that ALIBI is computationally very efficient and generates high-quality results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264155 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102755 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!