This illustrated review focuses on the physical forces that regulate hemostasis and thrombosis. These phenomena span from the vessel to the cellular to the molecular scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and the size of the vessel through which it flows. Blood flow imposes forces on the vessel wall and blood cells that dictates the kinetics, structure, and stability of thrombi. The mechanical properties of blood cells create a segmented flowing fluid whereby red blood cells concentrate in the vessel core and platelets marginate to the near-wall region. At the vessel wall, shear stresses are highest, which requires a repertoire of receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed endothelium and extracellular matrices. As a thrombus grows and then contracts, forces regulate platelet aggregation as well as von Willebrand factor function and fibrin mechanics. Forces can also originate from platelets as they respond to the external forces and sense the stiffness of their local environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279127PMC
http://dx.doi.org/10.1002/rth2.12548DOI Listing

Publication Analysis

Top Keywords

blood cells
12
physical forces
8
hemostasis thrombosis
8
illustrated review
8
forces regulate
8
vessel wall
8
forces
5
vessel
5
blood
5
forces regulating
4

Similar Publications

Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions.

Am Soc Clin Oncol Educ Book

January 2025

Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.

View Article and Find Full Text PDF

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

Microplastics in the bloodstream can induce cerebral thrombosis by causing cell obstruction and lead to neurobehavioral abnormalities.

Sci Adv

January 2025

State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.

Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!