Background: Diabetes mellitus (DM) is a metabolic disorder resulting from hyperglycemia. Hyperglycemia contributes to oxidative stress, and the release of advanced glycation end products (AGEs) further promotes disease pathogenesis. Uncontrolled diabetes reflects great oral complications and affects human oral health. So, the present study aimed to assess the effects of photobiomodulation therapy (PBMT) and Metformin on proliferation and viability of human periodontal ligament stem cells (HPDLSCs) cultured in high glucose medium.
Methods: HPDLSCs were collected, isolated, and characterized and then divided into eight groups. Addition of extra glucose to diabetic groups 24 hours before cell irradiations. Metformin was added to half of the diabetic groups. Cells were irradiated with 808 nm diode laser 24, 48 hours. Cell viability was analyzed with MTT assay 24 hours post-irradiation to detect cell viability in each group. Real-time (PCR) was used to evaluate gene expression of and and the effect of PBMT on Pathway. ELISA reader was used to evaluating cell viability through (ROS, TNF-α, IL-10) protein levels after cell irradiation.
Results: Photobiomodulation at 1, 2, and 3 J/cm2 combined with metformin significantly promoted diabetic cell lines of HPDLSCs viability (in MTT assay and ELISA reader of ROS, TNF-α, IL-10 results) and gene expression of , and levels (p< 0.05).
Conclusion: photobiomodulation with 3 J/cm combined with metformin enhanced proliferation and viability of diabetic cell lines of HPDLSCs and thus could improve differentiation and function of diabetic cell lines of HPDLSCs with minimum side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279709 | PMC |
http://dx.doi.org/10.52547/rbmb.10.1.30 | DOI Listing |
Eur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Nat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFEur J Heart Fail
January 2025
Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
Aims: Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China, 315040. Electronic address:
Objective: This study aimed to explore the relationship between the Systemic Inflammatory Response Index (SIRI) and Cerebral Small Vessel Disease (CSVD), focusing on its key imaging markers.
Methods: We enrolled 344 patients admitted to the neurology department between January 2022 and September 2024, comprising 223 patients diagnosed with CSVD and 121 without CSVD. Baseline characteristics were compared between groups, and multivariate logistic regression was performed to assess the impact of SIRI on CSVD risk.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!