Caloric restriction inhibits renal artery ageing by reducing endothelin-1 expression.

Ann Transl Med

Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.

Published: June 2021

Background: The renal artery plays a central role in renal perfusion and is critical for proper renal function. Ageing is an independent risk factor for both impaired renal function and vascular disorders, and associated with an increase in the expression of the vasoconstrictor endothelin-1 (ET-1), and caloric restriction (CR) without malnutrition has been shown to be an effective inhibitor of renal dysfunction induced by ageing. The objective of this study was to determine whether CR-mediated alleviation of renal dysfunction is mediated by ET-1 expression.

Methods: The young (2 months, 2 M) and old (12 months, 12 M) Sprague-Dawley male rats were used and fed ad libitum. The 12-month-old rats were further divided into 12 M and 12 M-caloric restriction (CR) (30% calorie restriction). After 8 weeks, the renal tissues were showed by PAS staining, and age-related metabolic parameters and renal functions were detected in each group of rats. The inflammatory cytokines of interleukin (IL)-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) were analyzed using ELISA. The mRNA and protein expression in the renal artery were analysis by qRT-PCR and Immunoblot analysis.

Results: Ageing was associated with significant increases in 24 h urine protein content and serum triglyceride and cholesterol in 12 M rats, both of which were significantly inhibited in 12 M-CR. The mRNA expression and the secretion of IL-6, IL-1β, TNF-α, and TGF-β1 in the renal artery was significantly increased with ageing and inhibited by CR. CR also inhibited ageing-induced (encoding ET-1) mRNA and protein expression in the renal artery. In addition, CR could regulate ET-1 expression by inhibiting the activation of NF-κB signaling and activation and induction in the expression of NF-E2-related factor 2 (Nrf2) and histone deacetylase and gene repressor sirtuin 1 (SIRT1), both of which play a central role in mitigating oxidative stress in young rats.

Conclusions: Moderate CR can reverse the ageing related kidney dysfunction by reducing the ET-1 expression. CR might be used as an alternative to prevent the ageing induced renal artery dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267285PMC
http://dx.doi.org/10.21037/atm-21-2218DOI Listing

Publication Analysis

Top Keywords

renal artery
24
renal
13
caloric restriction
8
expression
8
central role
8
renal function
8
renal dysfunction
8
il-6 il-1β
8
mrna protein
8
protein expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!