The Development of the Gut Microbiota and Short-Chain Fatty Acids of Layer Chickens in Different Growth Periods.

Front Vet Sci

Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jingzhong, China.

Published: July 2021

AI Article Synopsis

  • A long-term study on gut microbiota changes in chickens showed differing bacterial abundances and metabolic functions from 8 to 50 weeks of age.
  • At 8 weeks, there was a higher presence of Firmicutes and lower fiber-degrading bacteria, while SCFA-producing bacteria increased significantly by 20 weeks.
  • Although microbial diversity and certain metrics like OTUs were higher at 50 weeks, the SCFA concentration decreased compared to 20 weeks, indicating that too much microbial diversity may negatively affect SCFA production.

Article Abstract

A long-term observation of changes of the gut microbiota and its metabolites would be beneficial to improving the production performance of chickens. Given this, 1-day-old chickens were chosen in this study, with the aim of observing the development of the gut microbiota and gut microbial function using 16S rRNA gene sequencing and metabolites short-chain fatty acids (SCFAs) from 8 to 50 weeks. The results showed that the relative abundances of Firmicutes and genus were higher and fiber-degradation bacteria were less at 8 weeks compared with 20 and 50 weeks ( < 0.05). Consistently, gut microbial function was enriched in ATP-binding cassette transporters, the energy metabolism pathway, and amino acid metabolism pathway at 8 weeks. In contrast, the abundance of Bacteroidetes and some SCFA-producing bacteria and fiber-degradation bacteria significantly increased at 20 and 50 weeks compared with 8 weeks ( < 0.05), and the two-component system, glycoside hydrolase and carbohydrate metabolism pathway, was significantly increased with age. The concentration of SCFAs in the cecum at 20 weeks was higher than at 8 weeks ( < 0.01), because the level of fiber and the number of dominant fiber-degradation bacteria and SCFA-producing bacteria were more those at 20 weeks. Notably, although operational taxonomic units (OTUs) and the gut microbial α-diversity including Chao1 and abundance-based coverage estimator (ACE) were higher at 50 than 20 weeks ( < 0.01), the concentration of SCFAs at 50 weeks was lower than at 20 weeks ( < 0.01), suggesting that an overly high level of microbial diversity may not be beneficial to the production of SCFAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284478PMC
http://dx.doi.org/10.3389/fvets.2021.666535DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
gut microbial
12
weeks
12
fiber-degradation bacteria
12
metabolism pathway
12
weeks 001
12
development gut
8
short-chain fatty
8
fatty acids
8
microbial function
8

Similar Publications

Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.

Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.

View Article and Find Full Text PDF

The increasing prevalence of autoimmune and immune-mediated diseases (AIMDs) underscores the need to understand environmental factors that contribute to their pathogenesis, with the microbiome emerging as a key player. Despite significant advancements in understanding how the microbiome influences physiological and inflammatory responses, translating these findings into clinical practice remains challenging. This viewpoint reviews the progress and obstacles in microbiome research related to AIMDs, examining molecular techniques that enhance our understanding of microbial contributions to disease.

View Article and Find Full Text PDF

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.

View Article and Find Full Text PDF

Environmentally-Relevant Concentrations of Atrazine Had Minor Impacts on Gut Microbiota and Liver Metabolite in Juvenile Turtles.

Arch Environ Contam Toxicol

January 2025

Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.

Toxic effects of herbicide atrazine (ATR) have been evaluated in various aquatic organisms, but our understanding of its potential impacts in reptile species remains limited. In this study, the functional performances, and gut microbiota and liver metabolite alterations of ATR-exposed Mauremys sinensis juveniles were measured to evaluate its potential toxic effects in turtles. ATR exposure had no impact on the growth rate, but would allow turtles to right themselves more quickly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!