Soft tactile sensors are an attractive solution when robotic systems must interact with delicate objects in unstructured and obscured environments, such as most medical robotics applications. The soft nature of such a system increases both comfort and safety, while the addition of simultaneous soft active actuation provides additional features and can also improve the sensing range. This paper presents the development of a compact soft tactile sensor which is able to measure the profile of objects and, through an integrated pneumatic system, actuate and change the effective stiffness of its tactile contact surface. We report experimental results which demonstrate the sensor's ability to detect lumps on the surface of objects or embedded within a silicone matrix. These results show the potential of this approach as a versatile method of tactile sensing with potential application in medical diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281246 | PMC |
http://dx.doi.org/10.3389/frobt.2021.672315 | DOI Listing |
ACS Nano
December 2024
Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human-machine interactions of robots. However, traditional contact-electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact-electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, Florence, Italy.
. The perception of softness plays a key role in interactions with various objects, both in the real world and in virtual/augmented reality (VR/AR) systems. The latter can be enriched with haptic feedback on virtual objects' softness to improve immersivity and realism.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Photonics Engineering Automation and Control, Technical University of Denmark, Elektrovej, 2800 Kongens Lyngby, Denmark.
Obstacle contact detection is not commonly employed in autonomous robots, which mainly depend on avoidance algorithms, limiting their effectiveness in cluttered environments. Current contact-detection techniques suffer from blind spots or discretized detection points, and rigid platforms further limit performance by merely detecting the presence of a collision without providing detailed feedback. To address these challenges, we propose an innovative contact sensor design that improves autonomous navigation through physical contact detection.
View Article and Find Full Text PDFJ Physiol
December 2024
Delft University of Technology, Delft, The Netherlands.
A task as simple as holding a cup between your fingers generates complex motor commands to finely regulate the forces applied by muscles. These fine force adjustments ensure the stability and integrity of the object by preventing it from slipping out of grip during manipulation and by reacting to perturbations. To do so, our sensorimotor system constantly monitors tactile and proprioceptive information about the force object exerts on fingertips and the friction of the surfaces to determine the optimal grip force.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!