Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel glioma analytical method that, for the first time in the literature, integrates a cellularity feature derived from the digital analysis of brain histopathology images integrated with molecular features following the latest WHO criteria. We first propose a novel over-segmentation strategy for region-of-interest (ROI) selection in large histopathology whole slide images (WSIs). A Deep Neural Network (DNN)-based classification method then fuses molecular features with cellularity features to improve tumor classification performance. We evaluate the proposed method with 549 patient cases from The Cancer Genome Atlas (TCGA) dataset for evaluation. The cross validated classification accuracies are 93.81% for lower-grade glioma (LGG) and high-grade glioma (HGG) using a regular DNN, and 73.95% for LGG II and LGG III using a residual neural network (ResNet) DNN, respectively. Our experiments suggest that the type of deep learning has a significant impact on tumor subtype discrimination between LGG II . LGG III. These results outperform state-of-the-art methods in classifying LGG II . LGG III and offer competitive performance in distinguishing LGG . HGG in the literature. In addition, we also investigate molecular subtype classification using pathology images and cellularity information. Finally, for the first time in literature this work shows promise for cellularity quantification to predict brain tumor grading for LGGs with mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282424 | PMC |
http://dx.doi.org/10.3389/fonc.2021.668694 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!