Soil physicochemical (colloidal) properties affected by ozonated water and organic fertilization.

Biomass Convers Biorefin

Isfahan, Iran Department of Soil Science, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University.

Published: July 2021

More has to be investigated on the use of ozonated water (O3) for the improvement of growth medium properties. Accordingly, the objective was to examine the effects of O3 (control, 0.5, 1.0, and 2.0 mg L-) on soil physicochemical (colloidal) properties using organic fertilization (manure), under non-planted or planted conditions. Different soil physicochemical (colloidal) properties including soil available water (SAW), aggregate stability, soil porosity, pH, salinity (EC), organic carbon (SOC), CaCO, and cation exchange capacity (CEC) were determined. The experimental treatments and their interactions significantly (0.05) affected soil physicochemical properties including SAW (4.17-10.98%), aggregate stability and porosity (7.77-57.37%), SOC (0.15-2.09%), and CEC (17.68-42.75 Cmol( +)/kg). Interestingly, the single use of O3 or in combination with manure significantly decreased EC. Although O3 significantly decreased SOC in non-planted soils, it significantly increased SOC in planted soils. O3 may enhance soil physicochemical (colloidal) properties, and if combined with manure in a planted soil, such positive effects may be further enhanced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272839PMC
http://dx.doi.org/10.1007/s13399-021-01630-7DOI Listing

Publication Analysis

Top Keywords

soil physicochemical
20
physicochemical colloidal
16
colloidal properties
16
soil
8
ozonated water
8
organic fertilization
8
properties including
8
aggregate stability
8
properties
6
colloidal
4

Similar Publications

Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas.

View Article and Find Full Text PDF

Synergistic ecological remediation of tailings in high altitude ecologically fragile areas by ryegrass ( L.) and activated carbon.

Int J Phytoremediation

January 2025

Key Laboratory of Environmental Engineering and Pollution Control on the Plateau of Tibet Autonomous Region, School of Ecology and Environment, Tibet University, Lhasa, P.R. China.

The ecological vulnerability and extreme physicochemical properties of tailings in high-altitude mining areas pose challenges to the ecological restoration of tailings. Therefore, the aims of the current study were to remediate tailings in high-altitude mining areas by combining ryegrass () and activated carbon. Ryegrass potting experiments with Cu and Pb-Zn tailings and the two tailings amended with activated carbon.

View Article and Find Full Text PDF

Winter forage crops influence soil properties through establishing different arbuscular mycorrhizal fungi communities in paddy field.

Adv Biotechnol (Singap)

September 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.

Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.

View Article and Find Full Text PDF

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).

View Article and Find Full Text PDF

Impact of straw returning on soil ecology and crop yield: A review.

Heliyon

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.

Several studies have demonstrated the effect of straw return on enhancing soil ecology, promoting sustainable agricultural practices, and cumulative effects on plant yield. Recent studies have focused on straw return methods and their impact on soil nutrient cycling and the overall physicochemical composition of the soil. Despite the substantial progress and successes, several research gaps in these studies require further investigations to harness the full potential of straw return.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!