Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with "anti-HLA-G strategy" are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278316 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.698677 | DOI Listing |
JCO Glob Oncol
January 2025
Adults Solid Tumors Chemotherapy Department, Yeolyan Hematology and Oncology Center, Yerevan, Armenia.
Purpose: Pancreatic cancer is one of the deadliest cancers in the world. In Armenia, it is 12th by incidence. The aim of this study is to evaluate treatment and outcomes of pancreatic cancer in Armenia during the past 12 years.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
Center for Cell Engineering, Sloan Kettering Institute, New York, NY.
Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.
View Article and Find Full Text PDFJ Med Chem
January 2025
Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium.
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N-methyladenosine (mA), the most abundant modification to mRNA. The prevalence of mA and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of as an proof-of-concept compound.
View Article and Find Full Text PDFPulmonology
December 2025
Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Guidelines for the follow-up of pulmonary subsolid nodule (SSN) vary in terms of frequency and criteria for discontinuation. We aimed to evaluate the growth risk of SSNs and define appropriate follow-up intervals and endpoints. The immediate risk (IR) and cumulative risk (CR) of SSN growth were assessed using the Kaplan-Meier method according to nodule consistency and size.
View Article and Find Full Text PDFDalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!