More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283259 | PMC |
http://dx.doi.org/10.3389/fendo.2021.713961 | DOI Listing |
J Pharm Biomed Anal
May 2023
Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium. Electronic address:
Neuromedin U (NmU) and neuromedin S (NmS) are two closely related neuropeptides belonging to the neuromedin family. NmU usually occurs either as a truncated eight amino acid long peptide (NmU-8) or as an 25 amino acid long peptide, although other molecular forms exist depending on the species considered. NmS, on the other hand, is a 36 amino acid long peptide, sharing the same amidated C-terminal heptapeptide with NmU.
View Article and Find Full Text PDFBiol Pharm Bull
August 2022
Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University.
The suprachiasmatic nucleus (SCN) is the master circadian clock in mammals and is properly entrained by environmental light cycle. However, the molecular mechanism(s) determining the magnitude of phase shift by light is still not fully understood. The orphan G-protein-coupled receptor Gpr176 is enriched in the SCN, controls the pace (period) of the circadian rhythm in behavior but is not apparently involved in the light entrainment; Gpr176 animals display a shortened circadian period in constant darkness but their phase-resetting responses to light are normal.
View Article and Find Full Text PDFNat Commun
April 2022
The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
Front Endocrinol (Lausanne)
February 2022
Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally.
View Article and Find Full Text PDFInt J Mol Sci
April 2021
Department of Neurophysiology, Faculty of Medicine, Oita University, Oita 870-5593, Japan.
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!