Background: The interactions between the autonomic nervous system (ANS), intrinsic systems (e.g., endocrine), and internal pacemaker mechanisms govern short (milliseconds-seconds)- and long (seconds-minutes)-range heart rate variability (HRV). However, there is a debate regarding the identity of the mechanism underlying HRV on each time scale. We aim to design a general method that accurately differentiates between the relative contribution of the ANS and pacemaker mechanisms to HRV in various mammals, without the need for drug perturbations or organ isolation. Additionally, we aim to explore the universality of the relative contribution of the ANS and pacemaker system of different mammals.

Methods: This work explored short- and long-range HRVs using published ECG data from dogs, rabbits, and mice. To isolate the effects of ANS on HRV, ECG segments recorded before and after ANS-blockade were compared.

Results: Differentiation of the ANS from extrinsic and intrinsic pacemaker mechanisms was successfully achieved. In dogs, the internal pacemaker mechanisms were the main contributors to long-range and the ANS to short-range HRV. In rabbits and mice, the ANS and the internal pacemaker mechanisms affected both time scales, and anesthesia changed the relative contribution of the pacemaker mechanism to short- and long-range HRVs. In mice, the extrinsic mechanisms affected long-range HRV, while their effect was negligible in rabbits.

Conclusion: We offer a novel approach to determine the relative contributions of ANS and extrinsic and intrinsic pacemaker mechanisms to HRV and highlight the importance of selecting mammalian research models with HRV mechanisms representative of the target species of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278020PMC
http://dx.doi.org/10.3389/fphys.2021.665709DOI Listing

Publication Analysis

Top Keywords

pacemaker mechanisms
24
short- long-range
12
internal pacemaker
12
relative contribution
12
heart rate
8
rate variability
8
ans
8
pacemaker
8
mechanisms
8
hrv
8

Similar Publications

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac resynchronization therapy (CRT) improves functional mitral regurgitation (FMR) by coordinating heart muscle segments, especially between papillary muscles, beyond just boosting left ventricular (LV) performance.
  • Eighteen patients with dilated cardiomyopathy underwent tests to measure heart function, and biventricular pacing showed a significant reduction in mitral regurgitation despite some patients showing no change in LV pressure.
  • The study concludes that CRT effectively lowers FMR independently of LV systolic function improvements, highlighting the importance of understanding its mechanisms for better treatment outcomes.
View Article and Find Full Text PDF

Shenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS.

View Article and Find Full Text PDF

An 83-year-old man underwent dual-chamber pacemaker placement for complete atrioventricular block at another hospital. The active-fixation ventricular lead was positioned on the free wall of the anterior right ventricle. Ventricular pacing failure occurred on the day after pacemaker implantation, and fluoroscopy revealed right ventricular (RV) lead perforation.

View Article and Find Full Text PDF

The Role of P-Wave Variables in Enhancing Prediction of New-Onset Atrial Fibrillation in Patients With Acute Myocardial Infarction.

Ann Noninvasive Electrocardiol

January 2025

Heart Centre & Department of Cardiovascular Diseases and Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.

Background: After acute myocardial infarction (AMI), it is common to observe new-onset atrial fibrillation (NOAF), which is often related to a negative prognosis. Some P-wave variables (P-wave duration [PWD], P-wave amplitude, and interatrial block [IAB]), reflecting the process of electrical and structural remodeling, could predict the risk of atrial fibrillation (AF). This study aimed to assess the predictive value of P-wave variables for post-AMI NOAF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!