Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM. CD4 T cells, CD8 T cells, and macrophages were more key-related immune cells, indicating that SENP1 might be introduced as a potential target for cancer immunotherapy. We further showed that dysregulation of SENP1 is powerfully associated with decreased patient survival and clinical stage. Total SENP1 protein also increases in cancer. SENP1 is also controlled by transcription factors (TFs) CREB1, KDM5A, REST, and YY1 that regulates apoptosis, cell cycle, cell proliferation, invasion, tumorigenesis, and metastasis. These TFs were in a positive correlation with SENP1. MiR-138-5p, miR-129-1-3p, and miR-129-2-3p also inhibit tumorigenesis through targeting of SENP1. The expression level positively correlated with the expression levels of UBN1, SP3, SAP130, NUP98, NUP153 in 32 tumor types. SENP1 and correlated and binding genes: SAP130, NUP98, and NUP153 activated cell cycle. Consistent with this finding, drug analysis was indicated SENP1 is sensitive to cell cycle, apoptosis, and RTK signaling regulators In the end, SENP1 and its expression-correlated and functional binding genes were enriched in cell cycle, apoptosis, cellular response to DNA damage stimulus. We found that the cell cycle is the main way for tumorigenesis by SENP1. SENP1 attenuates the effect of inhibitory drugs on the cell cycle. We also introduced effective FDA-Approved drugs that can inhibit SENP1. Therefore in the treatments in which these drugs are used, SENP1 inhibition is a suitable approach. This study supplies a wide analysis of the SENP1 across The Cancer Genome Atlas (CGA) cancer types. These results suggest the potential roles of SENP1 as a biomarker for cancer. Since these drugs and the drugs that cause to resistance are applied to cancer treatment, then these two class drugs can use to inhibition of SENP1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280523 | PMC |
http://dx.doi.org/10.3389/fphar.2021.700454 | DOI Listing |
Cancer Sci
December 2024
Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.
View Article and Find Full Text PDFJ Morphol
January 2025
Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russian Federation.
The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.
View Article and Find Full Text PDFCell Prolif
December 2024
Department of Geriatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFHereditas
December 2024
Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.
Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!