A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Patient specific prediction of temporal lobe epilepsy surgical outcomes. | LitMetric

AI Article Synopsis

  • The study focuses on improving predictions for seizure freedom after surgery for drug-resistant temporal lobe epilepsy (TLE) using multidimensional Bayesian network classifiers (MBCs), which are advanced probabilistic models.
  • Data from 231 TLE patients across two institutions were analyzed, and the MBC model showed modest predictive performance, achieving an area under the curve (AUC) of 0.67 to 0.72 at various post-surgery time points, outperforming traditional methods like logistic regression.
  • The MBC's ability to capture complex relationships between clinical data and surgical outcomes suggests it may enhance pre-operative counseling for TLE surgery, with potential for further improvement using additional data.

Article Abstract

Objective: Drug-resistant temporal lobe epilepsy (TLE) is the most common type of epilepsy for which patients undergo surgery. Despite the best clinical judgment and currently available prediction algorithms, surgical outcomes remain variable. We aimed to build and to evaluate the performance of multidimensional Bayesian network classifiers (MBCs), a type of probabilistic graphical model, at predicting probability of seizure freedom after TLE surgery.

Methods: Clinical, neurophysiological, and imaging variables were collected from 231 TLE patients who underwent surgery at the University of California, San Francisco (UCSF) or the Montreal Neurological Institute (MNI) over a 15-year period. Postsurgical Engel outcomes at year 1 (Y1), Y2, and Y5 were analyzed as primary end points. We trained an MBC model on combined data sets from both institutions. Bootstrap bias corrected cross-validation (BBC-CV) was used to evaluate the performance of the models.

Results: The MBC was compared with logistic regression and Cox proportional hazards according to the area under the receiver-operating characteristic curve (AUC). The MBC achieved an AUC of 0.67 at Y1, 0.72 at Y2, and 0.67 at Y5, which indicates modest performance yet superior to what has been reported in the state-of-the-art studies to date.

Significance: The MBC can more precisely encode probabilistic relationships between predictors and class variables (Engel outcomes), achieving promising experimental results compared to other well-known statistical methods. Multisite application of the MBC could further optimize its classification accuracy with prospective data sets. Online access to the MBC is provided, paving the way for its use as an adjunct clinical tool in aiding pre-operative TLE surgical counseling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.17002DOI Listing

Publication Analysis

Top Keywords

temporal lobe
8
lobe epilepsy
8
surgical outcomes
8
evaluate performance
8
engel outcomes
8
data sets
8
mbc
6
patient specific
4
specific prediction
4
prediction temporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!