The popularity of tattooing has increased significantly over recent years. This has raised concerns about the safety of tattoo inks and their metabolites/degradation products. The photolytic and metabolic degradation of tattoo pigments may result in the formation of toxic compounds, with unforeseen health risks. A systematic literature review was undertaken to determine the current state of knowledge of tattoo pigments' degradation products when irradiated with sunlight, laser light or metabolised. The review demonstrates that there is a lack of knowledge regarding tattoo pigment degradation/metabolism, with only eleven articles found pertaining to the photolysis of tattoo pigments and two articles on the metabolism of tattoo pigments. The limited research indicates that the photolysis of tattoo pigments could result in many toxic degradation products, including hydrogen cyanide and carcinogenic aromatic amines.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41370-021-00364-yDOI Listing

Publication Analysis

Top Keywords

tattoo pigments
20
degradation products
12
tattoo
8
sunlight laser
8
pigments result
8
knowledge tattoo
8
photolysis tattoo
8
pigments
5
current knowledge
4
degradation
4

Similar Publications

Background: From the theoretical foundations of laser and energy-based applications for the skin to the development of advanced medical devices, the field of dermatologic surgery has undergone transformative changes.

Objective: To review the scientific and clinical advancement of laser and energy-based therapies within dermatologic surgery.

Materials And Methods: A literature search was conducted to identify important scientific advancements and landmark studies on light, laser, and energy-based devices within the field of dermatologic surgery.

View Article and Find Full Text PDF

Purpose: To report the surgical management and outcomes of a patient with granulomatous inflammation following scleral tattooing, emphasizing the associated risks and clinical implications.

Methods: A 26-year-old woman with a history of multiple body modifications, including scleral tattooing, presented with bilateral ocular pain and discomfort. Clinical examination revealed corneal dellen and subconjunctival granulomas.

View Article and Find Full Text PDF

Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.

View Article and Find Full Text PDF

Background: The new EU regulation on tattoo inks in force January 2022 in a hitherto unregulated market marks a historical change.

Objective: Mapping of the thousands of tattoo inks de facto used in studios before the new EU regulation and establish a historical reference to tattoo customer exposure, ink toxicology assessment, clinical complications, and the impact on tattooing businesses.

Method: A tattooist-operated electronic system (InkBase) for ink registration required by law is used in Denmark since 2018.

View Article and Find Full Text PDF

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!